Stressed Skins (2015)

stressedSkins_CF071400

Stressed Skins explores how very thin, easily bent metal sheet can become a strong but lightweight structure. Architects use thin metal sheets as cladding panels to provide integrated enclosure, structure and form. Because loads vary over such a building system, performance requirements vary, and customized load-adapted panel designs could mean significant efficiencies of material use and possible reductions for supporting structural systems.

This project develops workflows and methods to support customised design and fabrication using Incremental Sheet Forming (ISF).  These include the prediction of changes in material properties such as thinning and work hardening, the automated generation of load adapted rigidisation geometries, the prediction of overall structural behavior, and the automated generation of fabrication information. A specific concern is the development of adaptive mesh-based methods as a means to communicate information about design, material properties and performance across scales.

Continue reading

The Social Weavers (2013)

scw_150117_16x9_

The Social Weavers is a bending active, non-standard grid shell structure made from fibre composite rods of variable diameter and stiffness. The installation develops aggregate self-forming processes that intersect with the behavioural activation and distribution of fibre-composites under design direction for the production of a novel architecture. 

Continue reading

Transmissive Assemblies (2014)

Basic Material research into integrating material behaviour

aa

The installation Transmissive Assemblies concentrates upon two qualities that are particular to fibre reinforced composites: translucency in a structural element, and the ability to gain stiffness locally through forming and folding. Taking point of departure from preceding architectural experiments focused upon these qualities – exemplified by Renzo Piano’s Mobile Sulphur Extraction Facility (1965) – the project asks how a modern composite sandwich might be designed to modulate the transmission of light in a controlled manner through strategic material variation.

Continue reading

Multiscale Modeling Seminar (2013)

CITA Multiscale Modeling Seminar 31.05.2013 – Copenhagen

Advancements in architecture – particularly the emergence of engineered materials and the associated challenge of specifying material locally to meet global performance requirements – are posing new multi-scalar questions for the design and simulation process.  Traditionally, architecture’s tools for modeling and representation have considered only single scales: we now need to better understand how simulations can link generative computational models, structural analysis and material specifications to geometric and performative design goals, at the scales of structure, element and material. Continue reading