Stressed Skins (2015)

stressedSkins_CF071400

Stressed Skins explores how very thin, easily bent metal sheet can become a strong but lightweight structure. Architects use thin metal sheets as cladding panels to provide integrated enclosure, structure and form. Because loads vary over such a building system, performance requirements vary, and customized load-adapted panel designs could mean significant efficiencies of material use and possible reductions for supporting structural systems.

This project develops workflows and methods to support customised design and fabrication using Incremental Sheet Forming (ISF).  These include the prediction of changes in material properties such as thinning and work hardening, the automated generation of load adapted rigidisation geometries, the prediction of overall structural behavior, and the automated generation of fabrication information. A specific concern is the development of adaptive mesh-based methods as a means to communicate information about design, material properties and performance across scales.

Continue reading